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Abstract— The Unit Commitment (UC) problem is a typical 

application of optimization methods to ensure an efficient, secure 

and economic operation of power systems. Its main objective is to 

determine online schedules and production levels for generating 

units, based on operational costs minimization , ensuring supply 

meets demand at all times. The process of finding an optimal 

schedule of generating units, subject to several technical 

constraints, given a planning horizon, has been solved by a diverse 

set of techniques. The formulations of the UC problem vary with 

energy systems characteristics, as well as with other economical, 

technical and environmental factors.  

The present article mainly addresses the deterministic, single-

objective Thermal UC problem. The formulation of the problem is 

discussed, and its solution is obtained by both exact and heuristic 

methods. Are studied and developed three of the most referenced 

methods in energy systems optimization: Dynamic Programming 

(DP), Lagrangian Relaxation (LR) and Particle Swarm 

Optimization (PSO). Both DP and LR are classical methods that 

have been shown to be very effective in the operational scheduling 

process. PSO is a more recent population based evolutionary 

algorithm that has been applied to various optimization problems, 

including UC. The effectiveness of the developed algorithms is 

tested on a 10-unit system case study. The obtained results show 

the better suitability of PSO, balancing a satisfactory solution with 

a decent computing time.   

It is also proposed a model that integrates hydro-thermal and 

renewable units in an attempt show a glimpse of the real UC 

problem in the present day. 

 
Index Terms— Unit Commitment, Dynamic Programming, 

Lagrangian Relaxation, Particle Swarm Optimization. 

 

I. INTRODUCTION 

nergy systems are one of the most important infrastructures 

and one of the economic engines of a country, allowing its 

development and providing quality of life to its citizens. 

Energy is an everyday life essential asset for the modern 

societies and is of paramount importance to many companies, 

industry and the ordinary citizen. For electricity to be always 

available, the operation of the production system must be  

constantly planned. Worldwide demand for energy has been 

increasing at a pace that the expansion, planning and 

management of energy systems have become complex and 

challenging problems. 

Energy systems can be divided into three main subsystems: 

Generation, Transmission and Distribution of energy. Each 

subsystem has its own behavioral characteristics and constraints 

that govern the operation of the overall system. The need to 

 
 

provide electricity to consumers with the utmost safety and 

reliability obliges producer companies to plan energy supply 

processes at all levels. From the generation phase to the power 

supply to the final consumer, there are many economic 

considerations to consider. Thus, the planning steps should 

allow a reliable operation of the system while being 

economically sustainable. 

The power system total load varies at every instant, so, the 

electric power companies must plan the power generation to 

meet this variable load in advance. To do this, they must decide 

between the available generators, which should be connected 

and when to synchronize them to the network, as well as the 

sequence in which the operating units should be turned off. This 

decision-making process is known as Unit Commitment (UC). 

By optimizing such decisions, energy can be produced at a 

lower cost, while satisfying demand and certain constraints. 

These restrictions may be of the system itself, which are used 

to ensure the power supply safety, or may be technological, 

reducing the freedom of choice between units, as well as the 

range of possible generation. 

The traditional Unit Commitment problem is a single objective 

deterministic optimization problem. Its main objective is the 

operational scheduling of generating units using a criterion of 

minimization of the total operational costs during the time 

horizon considered, which could be several hours to a few 

weeks or years. The complexity of the problem depends on the 

diversity of the technological characteristics of energy systems 

and the generating units under consideration. The UC problem 

can be computationally challenging due to the high number of 

units present in a real energy system and the various constraints 

that each technology exhibits. For this reason, obtaining an 

optimal solution can be challenging. 

The main objective of the present work is the study and analysis 

of some of the most popular methods applied to Unit 

Commitment resolution: Dynamic Programming (DP), 

Lagrangian Relaxation (LR) and Particle Swarm Optimization 

(PSO). The theoretical principles on which these methods are 

based will be analyzed, being also developed algorithms on 

MATLAB® that will serve to later apply to a 10-unit system 

case study. An analysis and comparison of the solutions 

obtained by each method, will allow to infer about the 

effectiveness of each one on the UC Problem resolution. The 

comparison between algorithms will allow to evaluate the 

possible evolution of performance of the most recent methods 

in relation to the older ones.  

It is also the objective of this work to formulate the UC Problem 

of several generation technologies, to prove the increase of its 

complexity  
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II. LITERATURE REVIEW 

Unit Commitment is identified as a topic of enormous economic 

and technological relevance in the late 1950s, early 1960s. Until 

then, the scheduling and dispatch of thermoelectric units was 

performed through empirical techniques, typically with priority 

lists. These methods were far from optimal in economic terms, 

which translated into high production costs and high energy 

prices practiced to the final consumer. The first studies 

produced, [1] and [2], concluded about the need of Unit 

Commitment in energy systems from an economic point of 

view. They discuss several aspects and solution of the 

scheduling procedures to formulate the Unit Commitment 

problem, defining production costs functions and start-up and 

shut-down costs. The defined economic operation criterion to 

minimize the cost function expected value can be obtained 

through a constant periodic analysis of an equation that obtains 

the best combination of units to allocate. The publication [2] 

introduces the UC problem application of DP: a major 

breakthrough in power systems optimization. 

A. Classical Unit Commitment 

Dynamic Programming was introduced by Lowery [2] and its 

application to the UC problem has since then been studied by 

several authors. Pang et al. [3] presents a DP approach for 

thermal units scheduling for a period up to 48 hours, including 

start-up costs, spinning reserve and minimum up and down 

times constraints. [4] compares several types of Dynamic 

Programming, and the Priority List method. This comparison 

showed that different versions of DP allow to achieve 

significant reductions in costs.  

Lagrangian Relaxation is proposed on [5] and [6]. The main 

processes involve solving the dual problem in an approximate 

way, ignoring load or reserve constraints. An iterative process 

finds the possible dual reserve solution, properly adjusting 

Lagrange multipliers. Finally, for the given viable dual reserve 

solution, a viable global solution is obtained by executing an 

Economic Dispatch (ED) to satisfy the energy balance 

equations. This method has been used for decades in the UC 

problem solving and still has a major importance in helping 

other more advanced methods [7]. 

Mixed Integer Programming (MIP) is presented by John A. 

Muckstadt et al. [8] for the simultaneous resolution of the 

thermoelectric UC and ED problems. A.I. Cohen et al. [9] 

present a Branch and Bound algorithm, which is a 

combinatorial optimization method that discards non-viable 

solutions across lower and upper boundaries. A Mixed Integer 

Linear Programming (MILP) technique is proposed [10], which 

can be used for regulated or deregulated markets. The algorithm 

also provides the marginal energy price according to the 

constraints of the system. 

Genetic Algorithms (GA) are applied to the UC problem on the 

article [11]. GA are a class of Evolutionary Algorithms that use 

techniques inspired by evolutionary biology such as heredity, 

mutation, and crossover.  

Particle Swarm Optimization method is presented to solve the 

UC problem on [12]. The method uses the particles information 

to control the mutation operation and is similar to civil society 

as a group of "leaders" influence the rest of the population in 

choosing a better decision. 

The publication [13] present the integration of different 

methods on a single algorithm in a hope to benefit from the 

advantages of each one and thus improve the effectiveness of 

the UC problem resolution. The results confirmed that the use 

of hybrid algorithms achieves results, in certain cases, with 

greater efficiency than other single methods. 

B. Stochastic Unit Commitment 

Article [14] present a probabilistic model to analyze the risk 

resulting from the load uncertainty, which translates into the 

probability of committing insufficient capacity to compensate 

for unit faults and not foreseen load variations. The presented 

model solves the problem considering the power plant stops 

random nature, problems in transmission lines as well as 

uncertainty in load forecasting. 

C. Security Constrained Unit Commitment 

System safety must always be one of the most important aspects 

of power systems. The goal of minimizing production costs 

directly conflicts with the need to ensure the safe operation of 

an energy system. Several models and methods have been 

presented to solve the operational scheduling of units 

considering safety power system restrictions. In [15], John J. 

Shaw proposed a new technique to solve System Constrained 

Unit Commitment. The technique includes reserve 

requirements and power flow restrictions on transmission lines 

to ensure system security. 

D. Profit Based Unit Commitment 

With the liberalization of energy markets, the goal of producing 

energy at a minimal cost has ceased to make sense, when there 

are other competing companies on the market. On [16], the 

formulation of the Profit Based UC problem is presented in a 

perspective based on the new reality of the markets, where one 

does not try to minimize the cost, but to maximize the profit, 

which makes sense on non-monopolized markets. 

E. Unit Commitment with Environmental Considerations 

Article [17] analyze the problem with environmental 

considerations, namely, the gas emissions from thermal units. 

Fuel costs and emissions minimization are contradictory 

objectives, turning the problem into a multi-objective 

optimization whose solution is represented by Pareto fronts: 

compromise curves between polluting emissions and fuel costs. 

F. Unit Commitment with Several Technologies 

Environmental concerns have considerably increased, a 

particularly key factor on the UC problem, due to pollutants 

emissions. It was concluded that to reduce emissions of these 

substances, it would be necessary to implement new ways of 

introducing renewable energy technologies, which have a small 

environmental impact. The article [18] present a strategy to 

integrate thermal, hydro and renewable energy units.   

G. Conclusions 

The studies published during the last 50 years show a 

complexity increase on the UC problem. The growing 

complexity of the problem has been accompanied by a constant 

evolution of techniques used in its resolution. Nowadays, the 

most used methods are Evolutionary and MIP Algorithms. 
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III. UNIT COMMITMENT PROBLEM 

A. Problem Description 

The Unit Commitment problem consists on deciding, in a set of 

N generation units, when each unit j ∈ N must supply energy or 

not over a predefined time horizon T. In addition, it is decided, 

for each unit in operation in the instant t ∈ to the time horizon 

T, which is the energy Pt,j that it must produce. Therefore, the 

problem includes two types of decisions, which are limited by 

load restrictions and technological constraints. For a group of N 

generating units and a time horizon T, the total number of 

possible combinations are (2N - 1)T (for 10 units and 24 hours, 

there are 1.73x1072 possibilities). Since there often are multiple 

solutions that satisfy demand and certain requirements, it is 

necessary to define a performance measure to choose the best 

solution. Typically, the units scheduling is performed with the 

objective of minimizing the total costs of running them on 

energy production processes. 

The energy demand that the units must match varies greatly 

throughout the day and throughout the year. In an electrical 

power system, the total system load  is generally higher during 

the day and early evening, when industrial loads are high, and 

most people are awake. The load drops then during the late 

evening and early morning, when most of the population is 

asleep. In addition, the use of electricity has a weekly cycle, 

with the load being lower on weekend days than on weekdays 

and a seasonal cycle, with energy consumption being higher on 

the winter than on the summer. 

As already mentioned, Unit Commitment is performed with the 

objective of minimizing the total costs of operation. There are 

three types of costs: Cj(P), generation costs, SCost, start-up 

costs, and shutdown costs, which are usually included in start-

up costs. The cost involved in an optimal scheduling is given 

by the minimization of the total costs for all planning periods, 

with Ut,j being the state (1-on and 0-off) of the generator j in 

period t: 

             Min ∑ ∑ [𝐶𝑁
𝑗=1

𝑇
𝑡=1 j(Pt,j) x Ut,j  + SCostt,j x (1 - Ut-1,j ) × Ut,j           (1) 

 

B. Production Costs 

Generally, production costs are modeled as a quadratic function 

in relation to the production level. The generation cost function 

illustration is given in Figure 1 and its expression is as follows: 

                                                  Cj(Pt,j) = aj Pt,j2 + bjPt,j + cj                                        (2) 

 

Where aj [€/MWh2], bj [€/MWh] e cj [€/h] are the coefficients of 

unit j. 

 
Fig.1: Quadratic Function of Thermal Production Costs 

 

C. Start-up Costs 

Start-up costs are counted each time a generating unit is started 

and are often considered constant. However, on the steam 

turbine case, start-up costs should not be considered constant 

because they depend on the time the unit has been switched off 

and on the condition of the boiler, which may be hot or cold. If 

the boiler is kept warm during the period of inactivity, the start-

up costs are usually modeled as a linear function over time: 

                                           SCostj(t) = αj + γ j × HOFFj(t)                                       (3) 

 

Where HOFF is the number of hours the unit has been 

continuously off until the hour t, αj [€] is the fixed start-up cost 

and γj [€/h] is the cost coefficient associated with fuel 

consumption to maintain the required temperature. 

 

However, if the boiler is allowed to cool, the start-up costs are 

typically considered as exponentially time dependent, as in the 

following expression and Fig.2: 

                                      SCost(t) = α + β  × (1 – eHOFF(t)/ τ)                        (4) 
 

Where β (€) is the cold start-up cost and τ is the cooling 

constant. 

 
Fig.2: Cold start cost of a steam turbine generator 

 

On the diesel groups case, start-up costs are more difficult to 

model as they can assume intermediate levels of heating and 

fuel changes. In general, a simplified cost model is used, which 

can be represented by: 
         

SCost(t)={
𝑆𝐻,       𝑖𝑓 𝐻𝑂𝐹𝐹min ≤ 𝐻𝑂𝐹𝐹(𝑡) ≤ 𝐻𝑂𝐹𝐹min + 𝐻𝑐
 𝑆𝐶,                               𝑖𝑓 𝐻𝑂𝐹𝐹(𝑡)  >  𝐻𝑂𝐹𝐹min + 𝐻𝑐

(5) 

 

Where HOFFmin is the minimum idle hours required of the 

given unit, SH e SC are the hot and cold starting costs 

respectively, e Hc is a unit parameter such that HOFFmin+Hc 

indicates the number of hours the boiler needs to cool down. 

D. Restrictions  

Power systems must always meet customer demand Dt. It must 

also be ensured the ability to quickly generate additional 

energy, that is, a certain spinning reserve Rt should be 

committed. It should be noted that each unit has a certain 

minimum, PMinj, and maximum, PMaxj, production limits. 

 

Load Demand Restrictions:  

                                                ∑ 𝑃𝑁
𝑗=1 j × Uj = Dt                                  (6) 

 

Spinning Reserve Restrictions: 

                       ∑ 𝑃𝑀𝑖𝑛𝑁
𝑗=1 j × Ut,j ≤ Dt + Rt ≤ ∑ 𝑃𝑀𝑎𝑥𝑁

𝑗=1 j × Ut,j                (7) 
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Generating units impose other restrictions on their 

characteristics and physical constraints. This includes unit 

capacity and production variance (positive: ΔUpj  or negative: 

ΔDownj) or minimum number of hours that the unit should be 

in each state: 1-ON (HONminj)  or 0-OFF (HOFFminj).       

 

Production Range Restrictions: 

                                  PMinj × Ut,j   ≤ Pt,j  ≤ PMaxj  × Ut,j                               (8) 

 

Ramp Restrictions: 

                                 -ΔDownj  ≤  Pt,j - Pt-1,j  ≤ ΔUpj                                      (9) 

 

Minimum Uptime and Downtime Constraints: 

             HONj (t)  ≥ HONminj and HOFFj (t)  ≥ HOFFminj            (10) 

 

 
Fig. 3: Example of state transitions with minimum time constraints 

(HONmin=3h e HOFFmin=3h) 

 

Further restrictions may be considered as being specific to 

certain generating units or resulting from the different 

production technologies that characterize energy systems. 

 

Must Run Restriction: Some units receive mandatory execution 

status during certain times of the year for voltage support on the 

transmission network or other purposes such as steam supply 

that can be availed for other applications. 

 

Fuel Restrictions: Some units may have limited fuel, or 

restrictions that require the burning of a specified amount of 

fuel at a given time. 

 

Hydro Restrictions: The Thermal Unit Commitment cannot be 

completely separated from the scheduling of hydroelectric 

units.  

IV. DYNAMIC PROGRAMMING 

Facing the UC problem dimensionality issues and the 

inefficiency of Priority Lists, by itself, in solving the problem 

for most cases, several authors have proposed the application of 

Dynamic Programming to its resolution. Dynamic 

Programming has many advantages over Brute Force 

techniques of complete enumeration, the main one being a 

possible dimensionality reduction of the problem without 

sacrificing obtaining an optimal solution.  

In general, Dynamic Programming is a recursive optimization 

method, making a sequence of interconnected decisions: 

1. Defines a small part of the problem, finding an optimal 

solution for this part; 

2. It slightly expands this small part of the problem, finding the 

optimal solution for the new problem using the optimal solution 

previously found; 

3. Continues process 2 until the expansion of the problem leads 

to a problem that encompasses the fullness of the original 

problem. With this problem solved, the stopping conditions are 

satisfied; 

4. The problem solution is constructed from the optimal 

solutions found for the small problems solved throughout the 

process. 

 

To avoid a complete enumeration of all states, two variables can 

be added to the algorithm, n and m: 

• n = number of states to search in each period. 

• m = number of strategies or paths to save at each step. 

 
 

Fig. 4: Restricted search path in the Dynamic Programming algorithm  

(m=3 and n=5) [19] 

A. Algorithm 

 
Fig. 5: Dynamic Programming algorithm flow chart [19] 
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B. Objective Function 

The Dynamic Programming recursive equation applied to the 

UC problem, at the time t for a state k, can be defined as: 

  FCost(t,k) = minL [C(t,k) + SCost(t-1, L:t, k) + FCost(t-1 , L)]  (11) 

 

Where: FCost is the lesser cumulative cost until state (t,k); 

SCost(t-1,L:t,k) is the start-up cost of the transition from the 

state (t-1 , L) to (t,k); C is the production cost of the state (t,k). 

 

Given that the energy production cost function considered in 

this work is quadratic, the lossless economic dispatch will be 

computed through quadratic programming, by MATLAB 

function, quadprog. As the name implies, this "special" 

function minimizes the production costs quadratic function by 

analyzing different system and unit variables. The quadprog 

function provides the optimal output that each unit must 

generate to match the demand for a given combination. The 

function is presented in [20]. 

After obtaining the optimal production of each unit for a certain 

combination and hourly demand, the minimum production cost 

is obtained by adding the production cost quadratic functions, 

for Pj, of all units committed. 

For a certain hourly demand, the process of finding the 

combination with the lowest cost of production can be a 

complicated task because of the many variables on which it 

depends and the various combinations of possible states. This 

process will be carried out through an increasing ordering 

function, with the first element being the least cost combination. 

 

To incorporate start-up costs into the DP algorithm, when a unit 

changes from "0 state" to "state 1", it is sufficient to store the 

previous unit state in memory and compare it with the state of 

the combination to be considered: 

• If the difference between the current state and the previous 

state is greater than zero, it means that the unit has been turned 

on in the current period and the unit starting cost in question 

must be added. 

• If not, the unit has been switched off or it is on for at least two 

consecutive hours, with no additional costs. 

V. LAGRANGIAN RELAXATION 

The great resulting benefits from using Lagrangian Relaxation 

are the decomposition of the problem, where each unit becomes 

a single entity, being optimized individually. Thus, the 

commitment of each unit is done optimally, but independently 

of the others. The main advantage of this method is achieved 

due to the load restrictions relaxation, not requiring the 

generated power to be equal to the demand at all the iterations. 

A possible solution is obtained by the iterative update of 

Lagrange multipliers, which approaches the relaxed solution, 

called the dual solution, to the solution that respects the load 

restrictions: the so-called primal solution. 

The Lagrangian function is formed in the same way as in the 

Economic Dispatch problem resolution [19]: 

ℒ = ∑ ∑ [𝐶𝑁
𝑗=1

𝑇
𝑡=1 j(Pt,j) + SCostt,j ] × Ut,j  + ∑ 𝜆𝑇

𝑡=1 t Dt - ∑ ∑ 𝜆𝑁
𝑗=1

𝑇
𝑡=1 t Pt,j Ut,j (12) 

 

Where ℒ is the Lagrangian and λ is the Lagrange multiplier. 

A. Dual Optimization Process 

In the LR method, the coupling constraints are temporarily 

ignored, solving the problem as if they did not exist. This is 

done through the dual optimization procedure, which tries to 

reach the optimum by maximizing the Lagrangian in relation to 

the Lagrange multipliers (13), while minimizing it in relation to 

the other variables in the problem (14). 

                                         q*( λ) = max λt  q(λ)                                   (13) 

 

                                   q(λ) = min Ptj, Utj ℒ(P,U, λ)                                  (14) 

 

The minimum of the function (14) is found for a certain optimal 

generation, Poptj, through its first derivative. 

There are three distinct cases to keep in mind, depending on the 

Poptj relation with the generating units limits:  

If Poptj ≤ PMinj , so: 

     min [Cj (Pj) - λt Pt,j ]  = Cj(PMinj) - λt PMinj                 (15.a) 

If PMinj ≤ Poptj ≤ PMaxj , so: 

 

      min [Cj (Pj) - λt Pt,j ]  = Cj(Poptj) - λt Poptj                 (15.b) 

If Poptj ≥ PMaxj , so: 

     min [Cj (Pj) - λt Pt,j ]  = Cj(PMaxj) - λt PMaxj                 (15.c) 

 

It should be noted that, in order to minimize q(λ) in each state 
and that when the state Ut,j=0 this value is zero, then the only 

way to get a lower value is by having: 

                                           [Cj (Pj) - λt Pt,j ]  < 0                                     (16) 

 

B. Algorithm 

 
Fig. 6: Lagrangian Relaxation algorithm flow chart [19] 
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C. Duality Gap 

The difference between the primal and dual solutions is called 

duality gap, which must be minimized by approaching the dual 

value to the primal value. 

The interval between the maximization of the dual cost 

functions (q*) and the minimization of the primal cost functions 

(J*), called the relative duality gap (Δ), can be used as a stop 

criterion. Therefore, the duality gap is used as a measure of 

convergence, being given by the following expression: 
 

                                              Δ =  
𝐽∗ − 𝑞∗

𝑞∗
                                               (17) 

D. Adjusting λ 

Throughout this work, the Lagrange multipliers adjustment will 

be done as follows, as proposed in [19]: 

                                            λt = λt + [ 
𝑑

𝑑𝜆
 q(λ) ] ε                                     (18) 

 

                                ε = 0.01     When   
𝑑

𝑑𝜆
q(λ)  > 0                          (19.a) 

 

                              ε = 0.002     When   
𝑑

𝑑𝜆
q(λ)  < 0                         (19.b) 

VI. PARTICLE SWARM OPTIMIZATION 

The particle swarm simulates a type of social optimization 

where each proposed solution (particle) is evaluated through an 

eligibility function, with the best leading the rest through the 

iterative process. This process is initiated to iteratively improve 

the candidate solutions, with the particles evaluating the 

suitability of these solutions, remembering the location where 

they had the best success. Each particle provides this location 

to adjacent particles, which also have access to the location 

where their neighbors have been most successful. The 

movements through the search space are guided by these 

successes, with the population converging, generally, to the best 

solution of the problem (or near it), at the end of the process. 

Initially, the particles can randomly move in the search space, 

shifting according to the velocities derived from their current 

position and that of other particles in the swarm. The objective 

function of the problem is solved using each particle, and its 

assessed value is called fitness. Particles cross the entire search 

space with their own experience and that of others, with 

experience meaning their best physical value. 

The best individual fitness value is stored as pbest (personal 

best) and the best of all particles is stored as gbest (global best). 

The social interaction between particles causes them to learn 

from each other and motivate them to move to better positions. 

So, the next movement of a particle, in a certain iteration, is 

motivated by experience, with its new velocity being influenced 

by its better physical fitness and that of its neighbors. 

A. Procedures 

The PSO algorithm steps based on a fully connected network 

will be discussed below: 

1. Randomly initialize the swarm of dimension equal to E 

particles, with a particle pk on the position xk
1 of the search 

space, in iteration 1; 

2. Compute the fitness value of each particle fitness(xi); 

 

3. Compare fitness of each particle their best pbest so far. This 

process can be defined as follows: 

      If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑘
𝑖 ) < pbestik  ,Then:   {

𝑝𝑏𝑒𝑠𝑡𝑘
𝑖 =  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑘

𝑖 ) 

𝑥𝑘,𝑝𝑏𝑒𝑠𝑡 
𝑖 = 𝑥𝑘

𝑖    (20) 

 

4. Compare fitness of all particles to find gbest, according to the 

following expression: 

         If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑘
𝑖 ) <gbesti  , Then:   {

𝑔𝑏𝑒𝑠𝑡𝑖 =  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑘
𝑖 ) 

𝑥𝑔𝑏𝑒𝑠𝑡 
𝑖 = 𝑥𝑘

𝑖   (21) 

 

5. Update the velocity of each particle to the next iteration, 

where w is the weight of inertia, c1 and c2 are constants and 

rand is a random variable that assumes values between 0 and 1 

in a uniformly distributed form: 

     vk i+1= w ×vk i+c1 ×rand ×(𝑥𝑘,𝑝𝑏𝑒𝑠𝑡 - 𝑥𝑘
𝑖 )+c2 ×rand ×( 𝑥𝑘,𝑝𝑏𝑒𝑠𝑡 - 𝑥𝑘

𝑖 )     (22)  

 

                       Where: w = 𝑤𝑚𝑎𝑥  −  
𝑤𝑚𝑎𝑥  −  𝑤𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
 × 𝑖                         (23) 

 

6. Move each particle to a new position: 

                  𝑥𝑘
𝑖+1 = {

0   𝑠𝑒 𝑟𝑎𝑛𝑑 ( )  ≥  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑘
𝑖+1) 

1   𝑠𝑒 𝑟𝑎𝑛𝑑 ( )  < 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑘
𝑖+1)  

              (24) 

With: 

 

7. Repeat from step 2 until desired convergence is achieved. 

B. Algorithm 

 
Fig. 7: PSO algorithm flow chart [21] 
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VII. CASE STUDY 

The case study that will serve as a test for the developed 

algorithms consists of a daily schedule (24 hours) of 10 units, 

the characteristics of which are found in the Appendix, Table 

A. The demand to which the generating units must meet follows 

a typical daily load profile whose values are presented in Table 

1. 

TABLE 1 

LOAD DEMAND ON THE CASE STUDY IN [MW] 
Hour t 1 2 3 4 5 6 

Dt  600 500 500 700 750 850 

Hour t 7 8 9 10 11 12 

Dt 900 1000 1050 1100 1200 1200 

Hour t 13 14 15 16 17 18 

Dt 1000 900 800 700 900 1100 

Hour t 19 20 21 22 23 24 

Dt 1300 1500 1600 1400 1000 800 

 

A. Application of DP 

For this case study, the developed algorithm takes tcomp=1760 

seconds (almost 30 minutes) to get a final solution with a total 

operational cost of CTotal =451251€. The Fig.8 shows the hourly 

costs evolution as well as the evolution of the load demand 

versus the combined maximum power available, ∑ 𝑃𝑀𝑎𝑥𝑗 × 𝑈𝑗
𝑁
𝑗 . 

 
Fig.8: Hourly Production Costs and Load Demand versus Combined 

Maximum Power by DP 

 

Evaluating the obtained results, it can be verified that the 

obtained combinations agree with the considered restrictions. 

In the first hours, being the load demand minimum, only the 

base units supply energy, since they have greater capacity of 

generation and a lower cost of production. Essentially, the base 

units stay connected to the network throughout the scheduling 

because they have the lowest production cost and because they 

must be connected for many hours. As demand increases, the 

most economical available units will be initialized, which 

should stay on for a few hours. However, in certain cases it is 

convenient, in a small momentary energy spike, to initialize a 

more expensive unit rather than a more economical one, if this 

more expensive unit has no running time restrictions and has a 

low start-up cost. This happens at hours 11 and 12, with the 

algorithm opting 2 hours for the unit 8, to the detriment of 

several cheaper units that were available to be initialized but 

have more restricted conditions. 

B. Application of LR 

The algorithm reaches the stop conditions, Δ <0.06, after 17 

iterations, with about 4 seconds of computation time and a total 

operational cost of CTotal =459996€. 

 
Fig.9: Hourly Production Costs and Load Demand versus Combined 

Maximum Power by LR 

 

The iterative evolution of the primal J* and dual q* solutions as 

well as of Δ can be verified in Figure 10. The iterative evolution 

of λt is represented by Figure 11. 

 
Fig. 10: Iterative Evolution of the Dual Optimization  

 

 
Fig. 11: Iterative Evolution of λt 

 

The final solution presents an excess of reserve in most hours 

which contrasts with the solution obtained by Dynamic 

Programming. For that reason, the total cost is much higher. As 

can be seen in Figure 10, the duality gap becomes quite small 

as the dual optimization proceeds. The values of λt greatly 

increase in the first 3 or 4 iterations, which translates into a 

rapid growth of the q* solution. λt  then stabilize which causes 

the stabilization of q*. Convergence is unstable near the end of 

the process, meaning that some units are "switched on" and 

"off", which causes instability in the final solution. Primal 

solution J* is initially defined as a much higher value (1 million 

€) than the expected solution value and is only minimized when 

the dual solution provides a schedule that meets demand at all 

times and respects all constraints. 



 8 

C. Application of PSO 

The characteristic PSO parameters used in this problem will be 

E=50, imax=10, wmax=0.9 e wmin=0.4. The computational 

execution of the ten iterations took 50 seconds with a total 

operational cost of CTotal =452510€. 

 
Fig.12: Hourly Production Costs and Load Demand versus Combined 

Maximum Power by PSO 

 

Fig. 13 shows the iterative evolution of the total cost of 

operation, gbest. 

 
Fig.13: iterative evolution gbest. 

 

For a relatively complex case study like the present, obtaining 

a satisfactory solution is not as fast (iteratively) as it is for a 

simple case with only a few viable solutions. In cases with many 

units (≥10 generators), there are possibly many solutions that 

respect all problem constraints. On the random process of 

particle creation, there is hardly one that represents the optimal 

solution at the first iteration. In theory, the mechanisms that 

govern the PSO nature enhance an iterative improvement of the 

solution, translating into a decrease of the gbest value until the 

final iteration. For this case, the solution obtained by the PSO 

algorithm, gbest, is improved up to iteration 8, as the particles 

move to less expensive solutions.  

D. Comparison of Algorithms 

Figure 14 compares the hourly costs of the final solution 

obtained by each method: DP, LR and PSO. 

 
Fig.14: Comparison of Hourly Costs for each method 

 

Table 2 presents, for each method, the computation time, the 

total cost and its relative percentage difference in relation to the 

optimal solution cost. 

 

TABLE 2 

COMPARATIVE DATA BETWEEN ALGORITHMS 
 DP LR PSO 

tcomp [s] 1766s 4.29 49.7 

CTotal [€] 451251 459996 452510 

(𝑪𝑻𝒐𝒕𝒂𝒍  −  𝑪𝑻𝒐𝒕𝒂𝒍
𝑶𝒑𝒕

)/𝑪𝑻𝒐𝒕𝒂𝒍
𝑶𝒑𝒕

 [%] 0 1.94 0.28 

 

VIII. WIND AND HYDRO-THERMAL UNIT COMMITMENT 

The increased environmental considerations led to the 

incorporation of renewable energy technologies in production 

systems. The use of renewable energy, such as wind energy 

(through wind turbines), as well as hydropower (through 

hydroelectric plants), has the great advantage of having a small 

environmental impact when compared with thermal energy 

production technologies. Hydroelectric power has been used for 

more than a century and is a technology that is relatively 

developed, with its market share stabilized (except for some 

fluctuations inherent to the various levels of precipitation on 

each year). The use of new renewable energy technologies on 

electricity production has been increasingly implemented. In 

the last two decades, these alternative sources of energy 

production have gained prominence in the market in several 

countries of the world, a trend that will become even more 

pronounced soon. 

A. Problem Description 

The Thermal, Hydro and Wind UC problem can be solved using 

a method that combines Lagrangian Relaxation, with 

Sequential Unit Commitment (SUC) and Unit Decommitment 

(UD) [22]. It can be assumed that, at a certain time, wind energy 

is not subject to dispatch, having priority access to the grid. 

Knowing the hourly wind generation of energy, Pwindt, through 

forecasting methods, it is enough to commit the hydro and 

thermal units, as shown on the flowchart of Fig.15. The 

hydrothermal units will only have to meet a load equal to the 

hourly demand less the generation that the wind turbines will 

supply (25). This simplification can be done because, if the 

wind power units are able to generate energy (i.e. wind speed is 

sufficient to be profitable to produce energy), all this energy 

will have priority, being definitively supplied to the grid (except 

losses of energy). It should also be assured that the possible 

maximum hydrothermal production is greater than the demand 

and reserve minus the wind generation.   
∑ 𝑃𝑁

𝑗=1 t,j × Ut,j   + ∑ (𝑃ℎ𝐻
ℎ=1 t,h × Ut,h   - Ppumpt,h) + Pwindt   = Dt  (25) 

 

      ∑ 𝑃𝑀𝑎𝑥𝑁
𝑗=1 j×Ut,j + ∑ (𝑃ℎ𝑀𝑎𝑥𝐻

ℎ=1 h×Ut,h  -Ppumpt,h) ≥Dt+Rt- Pwindt   (26) 

 

                                      Pwindt = φwt × PwindMax                                               (27) 

 

With: Phh being the production of a h hydro unit, Ppump the 

energy spent on water pumping and PhMax being the maximum 

production of a hydro unit. PwindMax is the maximum wind 

production and φwt is the [%] of availability of wind on hour t. 
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B. Algorithm of Hydro-Thermal UC 

 
Fig.15: Hydro-Thermal UC Flowchart through LR, SUC and UD [22] 

 

IX. CONCLUSIONS 

It can be concluded that all developed algorithms solve the Unit 

Commitment Problem successfully. Each of the studied 

methods has advantages and disadvantages in their UC problem 

applications: 

• Dynamic Programming: It has the advantage of reaching an 

optimal solution. Despite this, it presents a dimensionality 

problem that manifest itself on a high computation time for real 

systems. 

• Lagrangian Relaxation: Achieves a viable solution very 

quickly, even for complex systems. Its disadvantage is the poor 

economical solution sometimes achieved. 

• Particle Swarm Optimization: It is the method that best 

balances a solution close to the optimum, with a good 

computation time. However, it rarely achieves an optimal 

solution. 

Nowadays, we face many challenges on the electricity 

generation field, due to the growing focus on renewable 

energies, which have great ecological advantages. There have 

been major changes in energy systems, modifying their 

operational paradigms. The commitment to increase the 

electricity production from renewable energies, characterized 

by great variability (and unpredictability), must be incorporated 

in the Unit Commitment Problem, increasing, however, its 

complexity of resolution. 
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APPENDIX 

TABLE A 

DATA OF THE GENERATING UNITS USED ON THE CASY STUDY 
Unit 

j 

Pminj 

[MW] 

PMaxj 

[MW] 

aj  

[€/MW2] 

 

bj 

[€/MW] 

cj 

[€/h] 

SCostj 

[€] 

HONminj 

[h] 

HOFFminj 

[h] 

Ini. State 

[h] 

1 150 400 0.0005 15 800 4000 7 7 8 HON 

2 150 400 0.0003 16 900 3500 7 7 5 HON 

3 50 200 0.002 16 500 1000 5 5 2 HOFF  

4 40 150 0.002 17 650 800 5 4 5 HOFF  

5 40 150 0.003 20 450 500 5 5 6 HOFF  

6 35 110 0.007 23 350 200 3 3 5 HOFF  

7 30 90 0.008 26 440 200 3 3 5 HOFF  

8 20 60 0.005 25 660 150 1 1 5 HOFF  

9 10 50 0.002 27 650 100 1 1 6 HOFF  

10 10 50 0.0015 28 600 100 1 1 6 HOFF 
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